Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

1998 ◽  
Vol 12 (13-14) ◽  
pp. 2105-2114 ◽  
Author(s):  
Koji Tamai ◽  
Toshio Abe ◽  
Makoto Araki ◽  
Hiroki Ito
2010 ◽  
Vol 4 (3) ◽  
pp. 1391-1431 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. Permafrost is largely determined by the surface energy balance. Its vulnerability to degradation due to climate warming depends on complex soil-atmosphere interactions. This article is the second part of a comprehensive surface energy balance study at a polygonal tundra site in Northern Siberia. It comprises two consecutive winter periods from October 2007 to May 2008 and from October 2008 to January 2009. The surface energy balance is obtained by independent measurements of the radiation budget, the sensible heat flux and the ground heat flux, whereas the latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The measurements reveal that the long-wave radiation is the dominant factor in the surface energy balance. The radiative losses are balanced to about 60% by the ground heat flux and almost 40% by the sensible heat fluxes, whereas the contribution of the latent heat flux is found to be relatively small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Significant spatial differences in the surface energy balance are observed between the tundra soils and a small pond. The heat flux released from the subsurface heat storage is by a factor of two increased at the freezing pond during the entire winter period, whereas differences in the radiation budget are only observed at the end of winter. Inter-annual differences in the surface energy balance are related to differences in snow depth, which substantially affect the temperature evolution at the investigated pond. The obtained results demonstrate the importance of the ground heat flux for the soil-atmosphere energy exchange and reveal high spatial and temporal variabilities in the subsurface heat budget during winter.


2020 ◽  
Author(s):  
zhenchao li

<p>The effects of soil seasonal freezing and thawing process on land surface heat fluxes were analyzed with two years observation data from 2013 to 2014 . The results showed that the sensible heat, latent heat and soil heat flux have no change significantly during the soil freezing stage. The sensible heat flux increased significantly, the latent heat flux decreased significantly, and the corresponding wave ratio increased during the frozen period. The soil moisture and soil heat flux increases rapidly, sensible heat flux and surface long wave radiation decrease rapidly, latent heat flux increases rapidly during the thawing stage. The thawing process of frozen soil has an obvious effect on the heat flux of soil, which increases the heat flux from surface soil to deep soil because of that the heat absorption of ice in thawing process.</p>


2005 ◽  
Vol 6 (6) ◽  
pp. 923-940 ◽  
Author(s):  
JoséL. Chávez ◽  
Christopher M. U. Neale ◽  
Lawrence E. Hipps ◽  
John H. Prueger ◽  
William P. Kustas

Abstract In an effort to better evaluate distributed airborne remotely sensed sensible and latent heat flux estimates, two heat flux source area (footprint) models were applied to the imagery, and their pixel weighting/integrating functionality was investigated through statistical analysis. Soil heat flux and sensible heat flux models were calibrated. The latent heat flux was determined as a residual from the energy balance equation. The resulting raster images were integrated using the 2D footprints and were compared to eddy covariance energy balance flux measurements. The results show latent heat flux estimates (adjusted for closure) with errors of (mean ± std dev) −9.2 ± 39.4 W m−2, sensible heat flux estimate errors of 9.4 ± 28.3 W m−2, net radiation error of −4.8 ± 20.7 W m−2, and soil heat flux error of −0.5 ± 24.5 W m−2. This good agreement with measured values indicates that the adopted methodology for estimating the energy balance components, using high-resolution airborne multispectral imagery, is appropriate for modeling latent heat fluxes. The method worked well for the unstable atmospheric conditions of the study. The footprint weighting/integration models tested indicate that they perform better than simple pixel averages upwind from the flux stations. In particular the flux source area model (footprint) seemed to better integrate the resulting heat flux image pixels. It is suggested that future studies test the methodology for heterogeneous surfaces under stable atmospheric conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xinli Ke ◽  
Enjun Ma ◽  
Yongwei Yuan

It has been shown that land use change in urbanized region, especially urban land expansion, will influence regional climate. However, there has been very little research on the climate effects of the future land use change in a rapidly urbanizing region. Taking the southern part of Jiangsu province in China as the study area and through a scenario analysis, the influence of land use change on the regional temperature was analyzed from the perspective of land surface radiation budget and energy balance. The results indicated that (1) the monthly average temperature is significantly higher under the Rapid Economic Growth (REG) scenario than under the Cooperate Environmental Sustainability (CES) scenario in 2050, especially in the hottest month (July). (2) The range of high-temperature regions is much wider under the REG scenario than it is under the CES scenario in 2050. (3) The land surface net radiation and latent heat flux are two key factors through which land use change influences the regional temperature in the study area, and the latent heat flux plays a dominant role. (4) Land use change mainly influences the land surface net radiation by altering the land surface albedo and emissivity. These results are helpful to mitigate regional climate change effects caused by land use change.


2021 ◽  
Author(s):  
Lucas Emilio B. Hoeltgebaum ◽  
Nelson Luís Dias ◽  
Marcelo Azevedo Costa

2008 ◽  
Vol 148 (5) ◽  
pp. 723-737 ◽  
Author(s):  
Yuji Kominami ◽  
Mayuko Jomura ◽  
Masako Dannoura ◽  
Yoshiaki Goto ◽  
Koji Tamai ◽  
...  

2021 ◽  
Author(s):  
Andreas Behrendt ◽  
Florian Spaeth ◽  
Volker Wulfmeyer

<p>We will present recent measurements made with the water vapor differential absorption lidar (DIAL) of University of Hohenheim (UHOH). This scanning system has been developed in recent years for the investigation of atmospheric turbulence and land-atmosphere feedback processes.</p><p>The lidar is housed in a mobile trailer and participated in recent years in a number of national and international field campaigns. We will present examples of vertical pointing and scanning measurements, especially close to the canopy. The water vapor gradients in the surface layer are related to the latent heat flux. Thus, with such low-elevation scans, the latent heat flux distribution over different surface characteristics can be monitored, which is important to verify and improve both numerical weather forecast models and climate models.</p><p>The transmitter of the UHOH DIAL consists of a diode-pumped Nd:YAG laser which pumps a Ti:sapphire laser. The output power of this laser is up to 10 W. Two injection seeders are used to switch pulse-to-pulse between the online and offline signals. These signals are then either directly sent into the atmosphere or coupled into a fiber and guided to a transmitting telescope which is attached to the scanner unit. The receiving telescope has a primary mirror with a dimeter of 80 cm. The backscatter signals are recorded shot to shot and are typically averaged over 0.1 to 1 s.</p>


Sign in / Sign up

Export Citation Format

Share Document